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Abstract

The finite abelian group G is type I if |G| has a prime divisor congruent
to 2mod 3, type II if |G| is divisible by 3 but has no divisors congruent to
2 mod 3, and type III if all divisors of |G| are congruent to 1 mod 3. A subset
A C G is weakly (2,1)-sum-free if the set of all sums of 2 distinct elements
of A is disjoint from A. We are interested in finding the size u'(G,{2,1}) of
the largest weak (2,1)-sum-free subset of G. Here, we determine u*(G, {2,1})
for G of type I and some G of type II. We also present new constructions for
weak (2, 1)-sum-free sets for G of type III, and so find a new lower bound for

w (G, {2,1}).

1 Introduction

Suppose that A = {aj,a2,...,a,} is a subset of a finite abelian group G, with
m € N. Let h be a non-negative integer.

We will write hA for the (ordinary) h-fold sumset of A, which consists of sums
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of exactly h (not necessarily distinct) terms of A. More formally,

hA:{i)\iai Al,...,AmGNo,i)\iZh}.
=1

i=1

For positive integers k > [, a subset A of a given finite abelian group G is called
(k,1)-sum-free when
kANIA=0.

We denote the maximum size of a (k,[)-sum-free subset of G as u(G, {k,l}). That
is,

W(G, {k,1}) = max{|A| | A C G, (kA) N (1A) = 0}.

Similarly, we will write h"A for the restricted h-fold sumset of A, which consists of
sums of exactly h distinct terms of A:

hA= {i )\iai
i=1

For positive integers k > [, a subset A of a given finite abelian group G is called
weakly (k,l)-sum-free when

Al,...,)\me{o,l},z/\i:h}.

i=1

KANTA=.

We denote the maximum size of a weak (k,[)-sum-free subset of G as p' (G, {k,[}).
That is,
W (G, {k,1}) =max{|A] | AC G, (KA) N (I"'A) = 0}.

2 Established values and bounds for y and p°

For any positive integer x, we define

<1 + %) 5 if x has prime divisors congruent to 2 mod 3,

vi(z,3) = and p is the smallest such divisor;

L%J otherwise.

Interestingly, the value of v (x, 3) is intimately related to (2, 1)-sum-free sets. In
fact, it has been proven that the largest size (2, 1)-sum-free set of the cyclic group
of order n is v1(n, 3):
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Theorem 1 (Diananda and Yap; [2] (G.4)) For all positive integers n, we have

(Zn, {2,1}) = vi(n, 3).

Definition 2 The exponent of a group is the order of the largest factor in its in-
varient decomposition.

The largest size of a (2, 1)-sum-free subset a group is dependent on its exponent
in a rather satisfying way:

Theorem 3 (Green and Ruzsa; [2] (G.18)) Let k be the exponent of G. Then

(G A21}) = p(Ze {2,1)) - = = v1(r,3) -

At least it is clear that
n
w(G,{2,1}) > vi(k,3) - pt

We can write G = G| x Z, with |G1| = %, and suppose that A C Zj is a (2, 1)-sum-
free set of maximal size. Then
|G1 x A| = n. v1(K,3)
K
and G x A must be (2,1)-sum-free in G, for if not we would have some (g1,a1),
(g2, a2), and (g3, as3) in G x A for which

(91 + g2,a1 + a2) = (g1,a1) + (92, a2) = (93, a3),

contradicting that A is (2,1)-sum free. Proving that u(G,{2,1}) < vi(k,3) - %
required extensive computational work, but by doing so, Green and Rusza finally
finished a four-decade-long search in 2005.

It should be mentioned that u is a lower bound of 1~ and that a more general
lower bound has been established:

Proposition 4 (Bajnok; [2] (G.63)) Suppose that G is an abelian group of order
n and exponent k. Then, for all positive integers k and | with k > | we have
n

H(G AR 1) 2 (G k1)) 2 v+ 0) -
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Zannier starts the work on considering weak (2, 1)-sum-free subsets by proving
that the maximal size of a weakly (2, 1)-sum-free subset of a cyclic group Z, is
v1(n, 3) if n has prime divisors congruent to 2 mod 3 and v1(n,3) + 1 otherwise.

Theorem 5 (Zannier; [2] (G.67)) For all positive integers we have

(1 + %) 5 if n has prime divisors congruent to 2 mod 3,

W (Zn,{2,1}) = and p is the smallest such divisor;
L%J +1 otherwise.

We will see in the proofs of Theorems 10 and 11 that the techniques used in Zannier’s
proof can be extended to be used on noncylcic groups.

In my last paper, I began the effort on evaluating u(G,{2,1}) for noncyclic
groups G. The following have been established and will be pertinent to our work
here.

Proposition 6 (Francis; [3]) For all groups G with order n, and for all positive
integers k > 1,

e e

2
This upper bound allows to find u(G,{2,1}) for any even G with even |G]|.
Proposition 7 (Francis; [3]) For any G with |G| =n =0 mod 2,
. n

Through specific constructions of weakly (2,1)-sum-free sets, we have the fol-
lowing.

Theorem 8 (Francis; [3]) For any positive integer w = 1 mod 2,

,U,A(Zg X Zgw, {2, 1}) > 3w + 1.

Theorem 9 (Francis; [3]) For all positive kK = 1 mod 6,

-1
W(Z2,12,1})) > “T VRN
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3 Divide and Conquer

As it has been done before, we find it natural to categorize groups into three types.
A group G is called type I if |G| has a divisor congruent to 2 mod 3, type II if |G]|
is divisible by 3 but has no prime divisors congruent to 2 mod 3, and type III if all
divisors of |G| are congruent to 1 mod 3.

3.1 Groups G of type I

We can completely determine p*(G, {2,1}) for G of type L.

Theorem 10 If G is a group of type I, then
W (G, {2,1)) = (G, {2,1}).

PROOF. It is clear that u(G,{2,1}) > u(G,{2,1}), so we must show that for any
weak (2,1)-sum-free A C G,

Al < (G, {2,1}).

Let n = |G|, k be the exponent of G, and p be the smallest prime divisor of n that
is congruent to 2 mod 3. Then Theorems 1 and 3 guarantee that

n

§7

WG, {2,1}) = w(Ze, {2,1}) - % = v1(k,3) - % - <1+;> g%: (1+;>

so to prove our claim it is sufficient to show that
1\ n
|A| < <1 + ) —.

p) 3

Note that if |G| is even, then 2 is the smallest prime congruent to 2 mod 3 that
divides n, so using Proposition 7 we can write

n

W21 =" = (1 n ;) (e (2.1)),

Also, when G is cyclic, Theorems 1 and 5 give us

WG 2 1)) = (o, {2,1)) = (1 n ;) Y (n.8) = p(Za (21)) = (G2 1)),
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We will continue and assume G is noncyclic and that 2 does not divide |G].

If A = {0}, our claim holds trivially, so suppose that A contains some nonzero
element a. In this case, A may not contain 0, for if 0 € A, then 0+a = a € A would
contradict A being weakly (2, 1)-sum-free. Therefore, we can assume that 0 ¢ A.

When A is (2, 1)-sum-free, our claim holds, so assume that A is not (2, 1)-sum-
free. This means that there is some ag € A for which 2ag € A. Since 0 € A, we have
that ag # 0, so ag # 2ay.

Let
Ar =ao+ (A\{ao}) ={ao+alaec A\ {ao}}

and
Ag = 2aq + (A \ {a07 2(10}) = {2@0 +a | a€A \ {ao, 2a0}}.

Note that A1 C 2°A and Ay C 2°A, so A is disjoint from both A; and As. Fur-
thermore, A; and Ay are disjoint too, since otherwise we would have elements
a; € A\ {ao} and ag € A\ {ao,2ap} for which

ag + a1 = 2ag + ao,

but then
a; = aq + ag,

contradicting that A and A; are disjoint. Since A, A1, and As are pairwise disjoint,
we have

Al + [Ay] + | As] = 34| =3 < .

We know that n must be at most 3p: p divides n but n # p since G is not cyclic
and n # 2p since n is odd. Therefore,

n n n 1\ n
< - <7 _— = - J—
|A;_[SJ+1_3+3]) <1+p>3,

as desired. 0

3.2 Groups G of type 11

Recall that a group G is called type II if |G| is divisible by 3 but has no prime
divisors congruent to 2 mod 3.
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Theorem 11 If G is a group of type II, then

p(G{2,1}) < u(G{2,1}) + 1.

PROOF. It is clear that ¢ (G,{2,1}) > u(G,{2,1}), so we must show that for any
weak (2,1)-sum-free A C G,

|A] < pu(G,{2,1}) + 1.

Theorems 1 and 3 guarantee that
n n K| n
ﬂ(G7{2al})+1 :N(Zm{2>1}) : E‘i‘l :'Ul("‘fy?)) : E‘i‘l = [*J ‘E‘i‘l:

where k is the exponent of G. Since « is divisible by the order of every cyclic group
in the invarient factorization of G, and 3 is prime, since 3 divides |G|, 3 divides k
as well. This means that it is sufficient to show that

K n K N n
A<L,J., =222
||_ 3 /-$+ 3 /{Jr 3Jr

If A = {0}, our claim holds trivially, so suppose that A contains some nonzero
element a. In this case, A may not contain 0, for if 0 € A, then 0+a = a € A would
contradict A being weakly (2, 1)-sum-free. Therefore, we can assume that 0 ¢ A.

When A is (2, 1)-sum-free, our claim holds, so assume that A is not (2, 1)-sum-
free. This means that there is some ag € A for which 2ag € A. Since 0 ¢ A, we have
that ag # 0, so ag # 2ag.

Let
Ay =ao+ (A\ {ao}) ={ao+alaec A\ {ao}}

and
Ay = 2ag + (A\ {ao, 2a0}) = {2a0 + a | \{ao, 2a0}}.

Note that A1 € 2°A and Ay C 2°A, so A is disjoint from both A; and As. Fur-
thermore, A; and Ay are disjoint too, since otherwise we would have elements
a; € A\ {ao} and ag € A\ {ao,2ap} for which

ag + a1 = 2ag + ao,

but then
a1 = ap + az,
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contradicting that A and A; are disjoint. Since A, A1, and As are pairwise disjoint,
we have

|A| + |Ay| + |As| = 3|4] =3 < n,

which implies that
A< E+1,

as desired. O

Corollary 12 If w =1 mod 2 has no prime divisors congruent to 2 mod 3, then

/f(Zg X Ligw, {2, 1}) = ,U(Zg X L {2, 1}) +1=3w+1.

PROOF. By Proposition 8
p(Zs x Zzw,{2,1}) > 3w + 1

and since Zs X Zs,, is type II, we can use Theorems 11 and 3 to write
R Jw
e (Zg X Lz, {2, 1}) < /,L(Zg X Lz, {2, 1}) +1= v1(3w,3) : @ +1=3w+1.
]

When w does have a prime divisor congruent to 2 mod 3, it is still true that
w(Zs x Zsw,{2,1}) > 3w + 1, however, this is a fairly poor lower bound and the
actual value of " (Zs X Zsy, {2,1}) is found in the previous section.

It is computationally verified that
ﬂA(Zg? {27 1}) =9= M(Z§7 {27 1})
with
A=1{(0,0,1),(0,1,0),(0,2,2),

(1,0,0),(1,1,2),(1,2,1),
(2,0,2),(2,1,1),(2,2,0)}

weakly (2,1)-sum-free in Zj. The value of (G, {2,1}) for larger groups G has thus
far been too computationally intensive to find.

A more general categorization on the groups G of type II for which

MA(Gv {27 1}) = M(G) {27 1}) +1

is not known.
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3.3 Groups G of type II1

Recall that a group G is called type III if all divisors of |G| are congruent to 1 mod 3.
We will establish a lower bound for u*(G,{2,1}) using a similar method to that in
Proposition 3.

Proposition 13 Let G = Gy x Z,, with |G1| odd and kK =1 mod 6. Define D C Zj

as 4
D_{il,ii%,...,iﬁg }

A_{(0,...,0,”§2>}u(G1xD).

Then A is weakly (2,1)-sum-free in G.

and A C G as

PROOF. Since D is an arithmetic progression of common difference two, we can
easily write

—4
2D:{0,iz,i4,...,i2.”3 }

another progression. Observe that the progression in 2D continues the progression

: - +2,
in D, skipping the term “3=:

Kk—4 K+ 2
9 —
3+ 3
and
H+2+2_m+8_ﬁ+8 B 25—4
3 T3 T3 T 3

Similarly, the progression in D continues the progression in 2D, skipping the term

_ k42
3

Furthermore, since « is odd, the arithmetic progression will repeat in at least s

terms, and
1 k—4 44—k k—1
2D Dl=1+=-12 -2
0]+ Dl =1+ 5 (2570 - 2057 ) + 55
k—4 k-1
=2 1
3 + 3 +
=Kk—2
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so D and 2D are disjoint. Thus, D is (2, 1)-sum-free, and we can partition Z,:

9 2
ZH:DU{H; }UQDU{—H;_ }

Now, if we take any (not necessarily distinct)

2
al,(IgEA\{<O,...,O,K_?|; >},

we know the last coordinates of a1 and a9 are in D, so the last coordinate of a1 + ao
is in 2D, not in D U {“TH}, hence, aj + as € A. It remains to be shown is that

32 (o {fn0237))

is disjoint from A, for which it is sufficient to show that D + %H is disjoint from D.

Well,
K+ 2 k—4 k—1 K+ 2
D =424 ....2.- —— 2. 2D U< —
e R B B C e )

which is disjoint from D, so we are done. O

Theorem 14 For every group G of type I11,
WG, {2,1}) = u(G,{2,1}) + 1.

PROOF. First note that if G is type III, then all divisors of |G| are congruent to
1 mod 3. Namely the exponent k of G is congruent to 1 mod 3. Since 2 Z 1 mod 3,
k Z 4 mod 6. Thus k = 1 mod 6. Then with notation as above, A is weakly (2,1)-
sum-free in G, so

(G {2.1)) > |A| = 1+ |Gy x D|

n k-—1
:1 —_

+ 3

n |k
-1eE[3

+/<c 3

=14 u(G,{2,1}).
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4 Future work

As stated before, a more general categorization on the groups G of type II for which

MA(Gv {27 1}) = :u(G7 {27 1}) +1

is not known, and would be valuable to find. It is curious that the value of
w(G,{2,1}) did not depend on the exponent of the group G for type I, but seems
to for type II.

It is also still open to prove or disprove that
(G {2,1)) = (G, {2.1)) +1

for every group G of type III. This task presents to be very challenging.
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