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Abstract

The finite abelian group G is type I if |G| has a prime divisor congruent
to 2 mod 3, type II if |G| is divisible by 3 but has no divisors congruent to
2 mod 3, and type III if all divisors of |G| are congruent to 1 mod 3. A subset
A ⊂ G is weakly (2, 1)-sum-free if the set of all sums of 2 distinct elements
of A is disjoint from A. We are interested in finding the size µ̂ (G, {2, 1}) of
the largest weak (2, 1)-sum-free subset of G. Here, we determine µ̂ (G, {2, 1})
for G of type I and some G of type II. We also present new constructions for
weak (2, 1)-sum-free sets for G of type III, and so find a new lower bound for
µ̂ (G, {2, 1}).

1 Introduction

Suppose that A = {a1, a2, . . . , am} is a subset of a finite abelian group G, with
m ∈ N. Let h be a non-negative integer.

We will write hA for the (ordinary) h-fold sumset of A, which consists of sums
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of exactly h (not necessarily distinct) terms of A. More formally,

hA =

{
m∑
i=1

λiai

∣∣∣∣ λ1, . . . , λm ∈ N0,
m∑
i=1

λi = h

}
.

For positive integers k > l, a subset A of a given finite abelian group G is called
(k, l)-sum-free when

kA ∩ lA = ∅.

We denote the maximum size of a (k, l)-sum-free subset of G as µ(G, {k, l}). That
is,

µ(G, {k, l}) = max{|A| | A ⊆ G, (kA) ∩ (lA) = ∅}.

Similarly, we will write ĥ A for the restricted h-fold sumset of A, which consists of
sums of exactly h distinct terms of A:

ĥ A =

{
m∑
i=1

λiai

∣∣∣∣ λ1, . . . , λm ∈ {0, 1}, m∑
i=1

λi = h

}
.

For positive integers k > l, a subset A of a given finite abelian group G is called
weakly (k, l)-sum-free when

k̂ A ∩ l̂ A = ∅.

We denote the maximum size of a weak (k, l)-sum-free subset of G as µ̂ (G, {k, l}).
That is,

µ̂ (G, {k, l}) = max{|A| | A ⊆ G, (k̂ A) ∩ (l̂ A) = ∅}.

2 Established values and bounds for µ and µ̂

For any positive integer x, we define

v1(x, 3) =


(

1 + 1
p

)
x
3 if x has prime divisors congruent to 2 mod 3,

and p is the smallest such divisor;⌊
x
3

⌋
otherwise.

Interestingly, the value of v1(x, 3) is intimately related to (2, 1)-sum-free sets. In
fact, it has been proven that the largest size (2, 1)-sum-free set of the cyclic group
of order n is v1(n, 3):
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Theorem 1 (Diananda and Yap; [2] (G.4)) For all positive integers n, we have

µ(Zn, {2, 1}) = v1(n, 3).

Definition 2 The exponent of a group is the order of the largest factor in its in-
varient decomposition.

The largest size of a (2, 1)-sum-free subset a group is dependent on its exponent
in a rather satisfying way:

Theorem 3 (Green and Ruzsa; [2] (G.18)) Let κ be the exponent of G. Then

µ(G, {2, 1}) = µ(Zκ, {2, 1}) ·
n

κ
= v1(κ, 3) · n

κ
.

At least it is clear that

µ(G, {2, 1}) ≥ v1(κ, 3) · n
κ
.

We can write G = G1×Zκ with |G1| = n
κ , and suppose that A ⊂ Zκ is a (2, 1)-sum-

free set of maximal size. Then

|G1 ×A| =
n

κ
· v1(κ, 3)

and G1 × A must be (2, 1)-sum-free in G, for if not we would have some (g1, a1),
(g2, a2), and (g3, a3) in G1 ×A for which

(g1 + g2, a1 + a2) = (g1, a1) + (g2, a2) = (g3, a3),

contradicting that A is (2, 1)-sum free. Proving that µ(G, {2, 1}) ≤ v1(κ, 3) · nκ
required extensive computational work, but by doing so, Green and Rusza finally
finished a four-decade-long search in 2005.

It should be mentioned that µ is a lower bound of µ̂ and that a more general
lower bound has been established:

Proposition 4 (Bajnok; [2] (G.63)) Suppose that G is an abelian group of order
n and exponent κ. Then, for all positive integers k and l with k > l we have

µ̂ (G, {k, l}) ≥ µ(G, {k, l}) ≥ vk−l(κ, k + l) · n
κ
.
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Zannier starts the work on considering weak (2, 1)-sum-free subsets by proving
that the maximal size of a weakly (2, 1)-sum-free subset of a cyclic group Zn is
v1(n, 3) if n has prime divisors congruent to 2 mod 3 and v1(n, 3) + 1 otherwise.

Theorem 5 (Zannier; [2] (G.67)) For all positive integers we have

µ̂ (Zn, {2, 1}) =


(

1 + 1
p

)
n
3 if n has prime divisors congruent to 2 mod 3,

and p is the smallest such divisor;⌊
n
3

⌋
+ 1 otherwise.

We will see in the proofs of Theorems 10 and 11 that the techniques used in Zannier’s
proof can be extended to be used on noncylcic groups.

In my last paper, I began the effort on evaluating µ(G, {2, 1}) for noncyclic
groups G. The following have been established and will be pertinent to our work
here.

Proposition 6 (Francis; [3]) For all groups G with order n, and for all positive
integers k > l,

µ̂ (G, {k, l}) ≤
⌊
n− 2 + l + k

2

⌋
.

This upper bound allows to find µ(G, {2, 1}) for any even G with even |G|.

Proposition 7 (Francis; [3]) For any G with |G| = n ≡ 0 mod 2,

µ̂ (G, {2, 1}) =
n

2
.

Through specific constructions of weakly (2, 1)-sum-free sets, we have the fol-
lowing.

Theorem 8 (Francis; [3]) For any positive integer w ≡ 1 mod 2,

µ̂ (Z3 × Z3w, {2, 1}) ≥ 3w + 1.

Theorem 9 (Francis; [3]) For all positive κ ≡ 1 mod 6,

µ̂ (Z2
κ, {2, 1}) ≥

κ− 1

3
· κ+ 1.
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3 Divide and Conquer

As it has been done before, we find it natural to categorize groups into three types.
A group G is called type I if |G| has a divisor congruent to 2 mod 3, type II if |G|
is divisible by 3 but has no prime divisors congruent to 2 mod 3, and type III if all
divisors of |G| are congruent to 1 mod 3.

3.1 Groups G of type I

We can completely determine µ̂ (G, {2, 1}) for G of type I.

Theorem 10 If G is a group of type I, then

µ̂ (G, {2, 1}) = µ(G, {2, 1}).

PROOF. It is clear that µ̂ (G, {2, 1}) ≥ µ(G, {2, 1}), so we must show that for any
weak (2, 1)-sum-free A ⊆ G,

|A| ≤ µ(G, {2, 1}).

Let n = |G|, κ be the exponent of G, and p be the smallest prime divisor of n that
is congruent to 2 mod 3. Then Theorems 1 and 3 guarantee that

µ(G, {2, 1}) = µ(Zκ, {2, 1}) ·
n

κ
= v1(κ, 3) · n

κ
=

(
1 +

1

p

)
κ

3
· n
κ

=

(
1 +

1

p

)
n

3
,

so to prove our claim it is sufficient to show that

|A| ≤
(

1 +
1

p

)
n

3
.

Note that if |G| is even, then 2 is the smallest prime congruent to 2 mod 3 that
divides n, so using Proposition 7 we can write

µ̂ (G, {2, 1}) =
n

2
=

(
1 +

1

2

)
· n

3
= µ(G, {2, 1}).

Also, when G is cyclic, Theorems 1 and 5 give us

µ̂ (G, {2, 1}) = µ̂ (Zn, {2, 1}) =

(
1 +

1

p

)
n

3
= v1(n, 3) = µ(Zn, {2, 1}) = µ̂ (G, {2, 1}).
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We will continue and assume G is noncyclic and that 2 does not divide |G|.

If A = {0}, our claim holds trivially, so suppose that A contains some nonzero
element a. In this case, A may not contain 0, for if 0 ∈ A, then 0 +a = a ∈ A would
contradict A being weakly (2, 1)-sum-free. Therefore, we can assume that 0 6∈ A.

When A is (2, 1)-sum-free, our claim holds, so assume that A is not (2, 1)-sum-
free. This means that there is some a0 ∈ A for which 2a0 ∈ A. Since 0 6∈ A, we have
that a0 6= 0, so a0 6= 2a0.

Let
A1 = a0 + (A \ {a0}) = {a0 + a | a ∈ A \ {a0}}

and
A2 = 2a0 + (A \ {a0, 2a0}) = {2a0 + a | a ∈ A \ {a0, 2a0}}.

Note that A1 ⊆ 2̂ A and A2 ⊆ 2̂ A, so A is disjoint from both A1 and A2. Fur-
thermore, A1 and A2 are disjoint too, since otherwise we would have elements
a1 ∈ A \ {a0} and a2 ∈ A \ {a0, 2a0} for which

a0 + a1 = 2a0 + a2,

but then
a1 = a0 + a2,

contradicting that A and A1 are disjoint. Since A, A1, and A2 are pairwise disjoint,
we have

|A|+ |A1|+ |A2| = 3|A| − 3 ≤ n.

We know that n must be at most 3p: p divides n but n 6= p since G is not cyclic
and n 6= 2p since n is odd. Therefore,

|A| ≤
⌊n

3

⌋
+ 1 ≤ n

3
+

n

3p
=

(
1 +

1

p

)
n

3
,

as desired. �

3.2 Groups G of type II

Recall that a group G is called type II if |G| is divisible by 3 but has no prime
divisors congruent to 2 mod 3.
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Theorem 11 If G is a group of type II, then

µ̂ (G, {2, 1}) ≤ µ(G, {2, 1}) + 1.

PROOF. It is clear that µ̂ (G, {2, 1}) ≥ µ(G, {2, 1}), so we must show that for any
weak (2, 1)-sum-free A ⊆ G,

|A| ≤ µ(G, {2, 1}) + 1.

Theorems 1 and 3 guarantee that

µ(G, {2, 1}) + 1 = µ(Zκ, {2, 1}) ·
n

κ
+ 1 = v1(κ, 3) · n

κ
+ 1 =

⌊κ
3

⌋
· n
κ

+ 1,

where κ is the exponent of G. Since κ is divisible by the order of every cyclic group
in the invarient factorization of G, and 3 is prime, since 3 divides |G|, 3 divides κ
as well. This means that it is sufficient to show that

|A| ≤
⌊κ

3

⌋
· n
κ

+ 1 =
κ

3
· n
κ

+ 1 =
n

3
+ 1.

If A = {0}, our claim holds trivially, so suppose that A contains some nonzero
element a. In this case, A may not contain 0, for if 0 ∈ A, then 0 +a = a ∈ A would
contradict A being weakly (2, 1)-sum-free. Therefore, we can assume that 0 6∈ A.

When A is (2, 1)-sum-free, our claim holds, so assume that A is not (2, 1)-sum-
free. This means that there is some a0 ∈ A for which 2a0 ∈ A. Since 0 6∈ A, we have
that a0 6= 0, so a0 6= 2a0.

Let
A1 = a0 + (A \ {a0}) = {a0 + a | a ∈ A \ {a0}}

and
A2 = 2a0 + (A \ {a0, 2a0}) = {2a0 + a | \{a0, 2a0}}.

Note that A1 ⊆ 2̂ A and A2 ⊆ 2̂ A, so A is disjoint from both A1 and A2. Fur-
thermore, A1 and A2 are disjoint too, since otherwise we would have elements
a1 ∈ A \ {a0} and a2 ∈ A \ {a0, 2a0} for which

a0 + a1 = 2a0 + a2,

but then
a1 = a0 + a2,
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contradicting that A and A1 are disjoint. Since A, A1, and A2 are pairwise disjoint,
we have

|A|+ |A1|+ |A2| = 3|A| − 3 ≤ n,
which implies that

|A| ≤ n

3
+ 1,

as desired. �

Corollary 12 If w ≡ 1 mod 2 has no prime divisors congruent to 2 mod 3, then

µ̂ (Z3 × Z3w, {2, 1}) = µ(Z3 × Z3w, {2, 1}) + 1 = 3w + 1.

PROOF. By Proposition 8

µ̂ (Z3 × Z3w, {2, 1}) ≥ 3w + 1

and since Z3 × Z3w is type II, we can use Theorems 11 and 3 to write

µ̂ (Z3 × Z3w, {2, 1}) ≤ µ(Z3 × Z3w, {2, 1}) + 1 = v1(3w, 3) · 9w

3w
+ 1 = 3w + 1.

�

When w does have a prime divisor congruent to 2 mod 3, it is still true that
µ̂ (Z3 × Z3w, {2, 1}) ≥ 3w + 1, however, this is a fairly poor lower bound and the
actual value of µ̂ (Z3 × Z3w, {2, 1}) is found in the previous section.

It is computationally verified that

µ̂ (Z3
3, {2, 1}) = 9 = µ(Z3

3, {2, 1})

with

A = {(0, 0, 1), (0, 1, 0), (0, 2, 2),

(1, 0, 0), (1, 1, 2), (1, 2, 1),

(2, 0, 2), (2, 1, 1), (2, 2, 0)}

weakly (2, 1)-sum-free in Z3
3. The value of µ̂ (G, {2, 1}) for larger groups G has thus

far been too computationally intensive to find.

A more general categorization on the groups G of type II for which

µ̂ (G, {2, 1}) = µ(G, {2, 1}) + 1

is not known.
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3.3 Groups G of type III

Recall that a group G is called type III if all divisors of |G| are congruent to 1 mod 3.
We will establish a lower bound for µ̂ (G, {2, 1}) using a similar method to that in
Proposition 3.

Proposition 13 Let G = G1 ×Zκ with |G1| odd and κ ≡ 1 mod 6. Define D ⊂ Zκ
as

D =

{
±1,±3, . . . ,±κ− 4

3

}
,

and A ⊂ G as

A =

{(
0, . . . , 0,

κ+ 2

3

)}
∪ (G1 ×D).

Then A is weakly (2, 1)-sum-free in G.

PROOF. Since D is an arithmetic progression of common difference two, we can
easily write

2D =

{
0,±2,±4, . . . ,±2 · κ− 4

3

}
,

another progression. Observe that the progression in 2D continues the progression
in D, skipping the term κ+2

3 :

κ− 4

3
+ 2 =

κ+ 2

3

and
κ+ 2

3
+ 2 =

κ+ 8

3
≡ κ+ 8

3
− κ = −2 · κ− 4

3
.

Similarly, the progression in D continues the progression in 2D, skipping the term
−κ+2

3 .

Furthermore, since κ is odd, the arithmetic progression will repeat in at least κ
terms, and

|2D|+ |D| = 1 +
1

2

(
2
κ− 4

3
− 2

4− κ
3

)
+
κ− 1

3

= 2
κ− 4

3
+
κ− 1

3
+ 1

= κ− 2

< κ,
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so D and 2D are disjoint. Thus, D is (2, 1)-sum-free, and we can partition Zκ:

Zκ = D ∪
{
κ+ 2

3

}
∪ 2D ∪

{
−κ+ 2

3

}
.

Now, if we take any (not necessarily distinct)

a1, a2 ∈ A \
{(

0, . . . , 0,
κ+ 2

3

)}
,

we know the last coordinates of a1 and a2 are in D, so the last coordinate of a1 +a2
is in 2D, not in D ∪ {κ+2

3 }; hence, a1 + a2 6∈ A. It remains to be shown is that(
0, . . . , 0,

κ+ 2

3

)
+

(
A \

{(
0, . . . , 0,

κ+ 2

3

)})
is disjoint from A, for which it is sufficient to show that D+ κ+2

3 is disjoint from D.
Well,

D +
κ+ 2

3
=

{
2, 4, . . . , 2 · κ− 4

3
, 2 · κ− 1

3

}
⊂
(

2D ∪
{
−κ+ 2

3

})
,

which is disjoint from D, so we are done. �

Theorem 14 For every group G of type III,

µ̂ (G, {2, 1}) ≥ µ(G, {2, 1}) + 1.

PROOF. First note that if G is type III, then all divisors of |G| are congruent to
1 mod 3. Namely the exponent κ of G is congruent to 1 mod 3. Since 2 6≡ 1 mod 3,
κ 6≡ 4 mod 6. Thus κ ≡ 1 mod 6. Then with notation as above, A is weakly (2, 1)-
sum-free in G, so

µ̂ (G, {2, 1}) ≥ |A| = 1 + |G1 ×D|

= 1 +
n

κ
· κ− 1

3

= 1 +
n

κ
·
⌊κ

3

⌋
= 1 +

n

κ
· v1(κ, 3)

= 1 + µ(G, {2, 1}).

�
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4 Future work

As stated before, a more general categorization on the groups G of type II for which

µ̂ (G, {2, 1}) = µ(G, {2, 1}) + 1

is not known, and would be valuable to find. It is curious that the value of
µ̂ (G, {2, 1}) did not depend on the exponent of the group G for type I, but seems
to for type II.

It is also still open to prove or disprove that

µ̂ (G, {2, 1}) = µ(G, {2, 1}) + 1

for every group G of type III. This task presents to be very challenging.
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